18,819 research outputs found

    Intermittency in passive scalar advection

    Full text link
    A Lagrangian method for the numerical simulation of the Kraichnan passive scalar model is introduced. The method is based on Monte--Carlo simulations of tracer trajectories, supplemented by a point-splitting procedure for coinciding points. Clean scaling behavior for scalar structure functions is observed. The scheme is exploited to investigate the dependence of scalar anomalies on the scaling exponent ξ\xi of the advecting velocity field. The three-dimensional fourth-order structure function is specifically considered.Comment: 4 pages, 5 figure

    Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors

    Full text link
    We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission, total vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization propagator. An exact relationship of proportionality between both propagators is found in terms of local field factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field contributions proportional to the resonant frequency and to the spectral line-width.Comment: Typos fixed, journal ref. adde

    Passive Scalar Structures in Supersonic Turbulence

    Full text link
    We conduct a systematic numerical study of passive scalar structures in supersonic turbulent flows. We find that the degree of intermittency in the scalar structures increases only slightly as the flow changes from transonic to highly supersonic, while the velocity structures become significantly more intermittent. This difference is due to the absence of shock-like discontinuities in the scalar field. The structure functions of the scalar field are well described by the intermittency model of She and L\'{e}v\^{e}que [Phys. Rev. Lett. 72, 336 (1994)], and the most intense scalar structures are found to be sheet-like at all Mach numbers.Comment: 4 pages, 3 figures, to appear in PR

    Nonlocal pseudopotentials and magnetic fields

    Get PDF
    We show how to describe the coupling of electrons to non-uniform magnetic fields in the framework of the widely used norm-conserving pseudopotential appro ximation for electronic structure calculations. Our derivation applies to magnetic fields that are smooth on the scale of the core region. The method is validated by application to the calculation of the magnetic susceptibility of molecules. Our results are compared with high quality all electron quantum chemical results, and another recently proposed formalism.Comment: 4 pages, submitted to Physical Review Letter

    "Locally homogeneous turbulence" Is it an inconsistent framework?

    Full text link
    In his first 1941 paper Kolmogorov assumed that the velocity has increments which are homogeneous and independent of the velocity at a suitable reference point. This assumption of local homogeneity is consistent with the nonlinear dynamics only in an asymptotic sense when the reference point is far away. The inconsistency is illustrated numerically using the Burgers equation. Kolmogorov's derivation of the four-fifths law for the third-order structure function and its anisotropic generalization are actually valid only for homogeneous turbulence, but a local version due to Duchon and Robert still holds. A Kolomogorov--Landau approach is proposed to handle the effect of fluctuations in the large-scale velocity on small-scale statistical properties; it is is only a mild extension of the 1941 theory and does not incorporate intermittency effects.Comment: 4 pages, 2 figure

    Statistics of mixing in three-dimensional Rayleigh--Taylor turbulence at low Atwood number and Prandtl number one

    Full text link
    Three-dimensional miscible Rayleigh--Taylor (RT) turbulence at small Atwood number and at Prandtl number one is investigated by means of high resolution direct numerical simulations of the Boussinesq equations. RT turbulence is a paradigmatic time-dependent turbulent system in which the integral scale grows in time following the evolution of the mixing region. In order to fully characterize the statistical properties of the flow, both temporal and spatial behavior of relevant statistical indicators have been analyzed. Scaling of both global quantities ({\it e.g.}, Rayleigh, Nusselt and Reynolds numbers) and scale dependent observables built in terms of velocity and temperature fluctuations are considered. We extend the mean-field analysis for velocity and temperature fluctuations to take into account intermittency, both in time and space domains. We show that the resulting scaling exponents are compatible with those of classical Navier--Stokes turbulence advecting a passive scalar at comparable Reynolds number. Our results support the scenario of universality of turbulence with respect to both the injection mechanism and the geometry of the flow

    On the von Karman-Howarth equations for Hall MHD flows

    Full text link
    The von Karman-Howarth equations are derived for three-dimensional (3D) Hall magnetohydrodynamics (MHD) in the case of an homogeneous and isotropic turbulence. From these equations, we derive exact scaling laws for the third-order correlation tensors. We show how these relations are compatible with previous heuristic and numerical results. These multi-scale laws provide a relevant tool to investigate the non-linear nature of the high frequency magnetic field fluctuations in the solar wind or, more generally, in any plasma where the Hall effect is important.Comment: 11 page

    Phase ordering of two-dimensional symmetric binary fluids: a droplet scaling state

    Full text link
    The late-stage phase ordering, in d=2d=2 dimensions, of symmetric fluid mixtures violates dynamical scaling. We show however that, even at 50/50 volume fractions, if an asymmetric droplet morphology is initially present then this sustains itself, throughout the viscous hydrodynamic regime, by a `coalescence-induced coalescence' mechanism. Scaling is recovered (with length scale l∼tl \sim t, as in d=3d=3). The crossover to the inertial hydrodynamic regime is delayed even longer than in d=3d=3; on entering it, full symmetry is finally restored and we find l∼t2/3l\sim t^{2/3}, regardless of the initial state.Comment: 4 pages, three figures include
    • …
    corecore